enzh-CNfrdeitjakoplptes

Tagged with: Alignment

Conjugate Selection for Precision Lens Centering (ABSTRACT)

ABSTRACT: The concept of centering a precision, symmetric lens system using a high-quality rotary table and an auto-focusing test instrument are well known. Less well known are methods of finding convenient, or easily accessible, lens conjugates on which to focus while performing the centering operation. We introduce methods of finding suitable conjugates and centering configurations that lend themselves to practical centering solutions.

Practical considerations for using grating produced Bessel beams for alignment purposes (ABSTRACT)

ABSTRACT: Bessel beams are useful for alignment because they create a small diameter, bright, straight line image in space perpendicular to the Axicon grating producing a beam that is an exact analog of a single ray in a ray tracing program. Bessel beams are produced by plane Axicon gratings whose pattern is chrome on glass, evenly spaced, concentric circles that are illuminated by a point source of light on the grating axis. The grating produces a more nearly ideal Bessel beam than a cone shaped type Axicon. The plane grating also serves as a plane mirror in an alignment setup to define four degrees of freedom in space rather than the usual two a plane mirror does.

Most discussions of Bessel beams assume illumination with collimated light. We have found it advantageous to use a point source for illumination because it is easy to implement and less expensive using a single mode fiber as a source than a precision collimating lens the diameter of the Axicon. Besides, collimated illumination produces a Bessel beam of finite length in transmission while, in theory, a beam of infinite length is created using a point source.

With these assumptions about how Bessel beams are produced with plane gratings and details about the grating diameter and line spacing it is easy to calculate the useful length of the Bessel beam in reflection from the grating. Other practical matters are also discussed such as 4 degree of freedom lens centering with a test apparatus with no moving parts.

Rapid centering of optics (ABSTRACT)

ABSTRACT: Traditionally a rotary table is used for optical centering because the table creates an axis as a reference. Previously, we showed that a Bessel beam also creates an axis useful for centering. The Bessel beam axis and a center of curvature of a surface makes it possible to center an optic simultaneously in tilt and decenter. We also showed that simultaneously sampling two arbitrary points along the Bessel beam also permits full adjustment of tilt and decenter of a powered optic. This makes centering possible without either a rotary table or a precision linear stage. In most common instances, however, sampling the beam at two points is unnecessary because of the inability to correct for both tilt and decenter. We discuss an alternative, simpler method using a Bessel beam.

Case Studies & Testimonials

  • "We are enjoying our Point Source Microscope and finding it invaluable in alignment and diagnostic tasks."

    Dr. John Mitchell
    Senior Optical Metrologist
    Glyndwr Innovations Ltd., St. Asaph, Wales, UK

     

  • "Just wanted to share a recent success aligning an adaptive optics test bed with the PSM. We used to use a traditional alignment telescope in the past, but the PSM made the whole process really easy and fast. The main requirements were to quickly determine the quality of beam collimation and pupil conjugates since there are several beam expanders and compressors with multiple pupil and focal planes."

    Suresh Sivanandam
    Dunlap Institute for Astronomy and Astrophysics
    University of Toronto

     

  • "You are always responsive and give us lots of useful information!!"

    Dr. Shaojie Chen
    Dunlap Institute for Astronomy and Astrophysics
    University of Toronto

     

  • "As always we are very much loving the instrument, I personally love the camera upgrade from what I'm used to!"

    Weslin Pullen
    Hart Scientific Consulting International, LLC
    Tucson, Arizona

     

Worldwide Representatives

FOR SALES IN CHINA PLEASE CONTACT:

FOR SALES IN CHINA PLEASE CONTACT:
OPTurn Company Ltd
R607, Yingzhi Building, 49-3 Suzhoujie Str.
Beijing, China
+86-10 62527842
This email address is being protected from spambots. You need JavaScript enabled to view it.

More Info

FOR SALES IN ALL OTHER ASIAN COUNTRIES PLEASE CONTACT:

FOR SALES IN ALL OTHER ASIAN COUNTRIES PLEASE CONTACT:

清 原 耕 輔   Kosuke Kiyohara
清原光学 営業部   Kiyohara Optics / Sales
+81-3-5918-8501
This email address is being protected from spambots. You need JavaScript enabled to view it.

Kiyohara Optics Inc.
3-28-10 Funado Itabashi-Ku Tokyo, Japan 174-0041

More Info

FOR SALES IN UK & EU PLEASE CONTACT

Armstrong Optical

+44(0) 1604 654220

This email address is being protected from spambots. You need JavaScript enabled to view it.

More Info