enzh-CNfrdeitjakoplptes

Centering

Aligning reflecting optics with Bessel beams (ABSTRACT)

ABSTRACT: Bessel beams have found use in the alignment of transmissive optics for some time. They are also used for the alignment of reflecting optics when used in the imaging mode, that is, when the wavefront is near spherical. However, there are cases where it would be useful to use the Bessel beam for alignment of far-off axis aspheres to order to get the asphere aligned close enough to its final position that light will go through the system in the imaging mode. In another mode, the Bessel beam is used to determine the normal to a free form surface.

Centering with the PSM (ABSTRACT)

ABSTRACT: Desribes step-by-step how to calculate the locations of the centers of curvature of optical elements to be centered, and how to set up one or two PSM's to center the lenses as they are assembled on a rotary table. Also discussed are practical issues relating to the hardware, and calculation of sensitivites to alignment.

Conjugate Selection for Precision Lens Centering (ABSTRACT)

ABSTRACT: The concept of centering a precision, symmetric lens system using a high-quality rotary table and an auto-focusing test instrument are well known. Less well known are methods of finding convenient, or easily accessible, lens conjugates on which to focus while performing the centering operation. We introduce methods of finding suitable conjugates and centering configurations that lend themselves to practical centering solutions.

Lens Centering Using the Point Source Microscope (ABSTRACT)

ABSTRACT: Precision lens centering is necessary to obtain the maximum performance from a centered lens system. A technique to achieve precision centering is presented that incorporates the simultaneous viewing through the upper lens surface of the centers of curvature of each element as it is assembled in a lens barrel. This permits the alignment of the optical axis of each element on the axis of a precision rotary table which is taken as the axis of the assembly.

Practical Alignment Using an Autostigmatic Microscope (ABSTRACT)

ABSTRACT: This paper defines optical alignment as placing optical conjugates and centers of curvature at the precise locations specified in the optical design. Auto-stigmatic microscopes (ASM) are the tools used to measure the offset between the optical conjugates and physical datums such as centers of balls and axes of cylinders in alignment fixtures and making precise alignment practical.

Precision cementing of doublets without using a rotary table (ABSTRACT)

ABSTRACT: Methods of centering without using a precision rotary table to establish a reference axis in space are several times faster than with a rotary table. However, finding an optimum method of establishing an alternative reference axis is challenging. We look at the small class of centering situations involving the precision cementing of doublets to illustrate the advantages of using a Bessel beam as the reference axis. Two approaches to centering illustrate the method; one involving first aligning the meniscus element and then adding the positive element, and the other, cementing the two elements and aligning the pair.

Rapid centering of optics (ABSTRACT)

ABSTRACT: Traditionally a rotary table is used for optical centering because the table creates an axis as a reference. Previously, we showed that a Bessel beam also creates an axis useful for centering. The Bessel beam axis and a center of curvature of a surface makes it possible to center an optic simultaneously in tilt and decenter. We also showed that simultaneously sampling two arbitrary points along the Bessel beam also permits full adjustment of tilt and decenter of a powered optic. This makes centering possible without either a rotary table or a precision linear stage. In most common instances, however, sampling the beam at two points is unnecessary because of the inability to correct for both tilt and decenter. We discuss an alternative, simpler method using a Bessel beam.

Case Studies & Testimonials

  • "We are enjoying our Point Source Microscope and finding it invaluable in alignment and diagnostic tasks."

    Dr. John Mitchell
    Senior Optical Metrologist
    Glyndwr Innovations Ltd., St. Asaph, Wales, UK

     

  • "Just wanted to share a recent success aligning an adaptive optics test bed with the PSM. We used to use a traditional alignment telescope in the past, but the PSM made the whole process really easy and fast. The main requirements were to quickly determine the quality of beam collimation and pupil conjugates since there are several beam expanders and compressors with multiple pupil and focal planes."

    Suresh Sivanandam
    Dunlap Institute for Astronomy and Astrophysics
    University of Toronto

     

  • "You are always responsive and give us lots of useful information!!"

    Dr. Shaojie Chen
    Dunlap Institute for Astronomy and Astrophysics
    University of Toronto

     

  • "As always we are very much loving the instrument, I personally love the camera upgrade from what I'm used to!"

    Weslin Pullen
    Hart Scientific Consulting International, LLC
    Tucson, Arizona

     

Worldwide Representatives

FOR SALES IN CHINA PLEASE CONTACT:

FOR SALES IN CHINA PLEASE CONTACT:
OPTurn Company Ltd
R607, Yingzhi Building, 49-3 Suzhoujie Str.
Beijing, China
+86-10 62527842
This email address is being protected from spambots. You need JavaScript enabled to view it.

More Info

FOR SALES IN ALL OTHER ASIAN COUNTRIES PLEASE CONTACT:

FOR SALES IN ALL OTHER ASIAN COUNTRIES PLEASE CONTACT:

清 原 耕 輔   Kosuke Kiyohara
清原光学 営業部   Kiyohara Optics / Sales
+81-3-5918-8501
This email address is being protected from spambots. You need JavaScript enabled to view it.

Kiyohara Optics Inc.
3-28-10 Funado Itabashi-Ku Tokyo, Japan 174-0041

More Info

FOR SALES IN UK & EU PLEASE CONTACT

Armstrong Optical

+44(0) 1604 654220

This email address is being protected from spambots. You need JavaScript enabled to view it.

More Info